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Abstract

Organisms are constantly exposed to microbial pathogens in their
environments. When a pathogen meets its host, a series of intri-
cate intracellular interactions shape the outcome of the infection.
The understanding of these host–pathogen interactions is crucial
for the development of treatments and preventive measures
against infectious diseases. Over the past decade, proteomic
approaches have become prime contributors to the discovery and
understanding of host–pathogen interactions that represent anti-
and pro-pathogenic cellular responses. Here, we review these
proteomic methods and their application to studying viral and
bacterial intracellular pathogens. We examine approaches for
defining spatial and temporal host–pathogen protein interactions
upon infection of a host cell. Further expanding the understanding
of proteome organization during an infection, we discuss methods
that characterize the regulation of host and pathogen proteomes
through alterations in protein abundance, localization, and post-
translational modifications. Finally, we highlight bioinformatic
tools available for analyzing such proteomic datasets, as well as
novel strategies for integrating proteomics with other omic tools,
such as genomics, transcriptomics, and metabolomics, to obtain a
systems-level understanding of infectious diseases.
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Proteomics: a powerful tool for studying of infectious
diseases

The constant interaction between hosts and pathogens is one of

the most intriguing aspects of life. These interactions have been

shaped throughout millions of years of evolution; hosts develop

defense mechanisms against pathogenic invasions and pathogens

circumvent these new lines of defense. Although adaptation

processes have allowed hosts to co-exists with and sometimes

even benefit from pathogens, numerous pathogens are still etio-

logical agents for a myriad of life-threatening human diseases.

Thus, understanding host–pathogen interactions has been a

driver for the development of means to prevent and treat

infection-induced diseases.

At the molecular level, host–pathogen interactions occur regu-

larly throughout the pathogen replication cycle. This is relevant for

intracellular pathogens, such as viruses and cytosolic bacteria,

which will be the focus of this review. Although their replication

strategies vary, these pathogens need to accomplish several tasks

in order to successfully replicate: enter the cell, harness cellular

components (e.g., proteins, metabolites, lipids) for replication, and

spread to neighboring cells (Fig 1A). Another important aspect of

their replication cycle is the ability of pathogens to counteract host

defenses, such as the immune system. Numerous years of research

on the molecular biology of pathogen infections have established

this general understanding of the pathogen “life cycle” within the

host cell. However, several questions remain challenging and time-

consuming to address using classic molecular biology methods.

Contemporary challenges include, first, the emergence of new

pathogens and related infectious diseases, which demand the

timely discovery of host and viral targets for diagnosis and devel-

opment of therapeutics (Morens & Fauci, 2012; Malone et al,

2016). Second, the emergence of drug-resistant viruses and bacte-

ria highlights the need to discover host pathways that can be

targeted to block the spread of pathogens. Lastly, medically

threatening viruses that have been investigated for many years still

persist with no suitable treatments or vaccines (e.g., Rieder &

Steininger, 2014).

During the last decade, omic approaches have emerged as effec-

tive tools in basic, translational, and clinical research for the study

of biological pathways involved in pathogen replication, host

response, and disease progression. Proteomics, the study of the

protein complement of biological systems, has become a driver in

the discovery and understanding of host–pathogen interactions

(Lum & Cristea, 2016; Fig 1B). This was made possible by both

improved proteomic technologies, offering sensitive protein detec-

tion and quantification, and the increased awareness within the

microbiology community, allowing the application of these
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approaches in innovative ways. The integration of proteomics with

other biochemical and molecular biology methods, as well as with

other omic approaches, has expanded the repertoire of tools to study

pathogen infections. Genomic, transcriptomic, and metabolomic

studies provide orthogonal information that complements proteomic

analyses to achieve a systems-level understanding of the infection

process. Here, we review the current state of proteomics approaches

to elucidate host–pathogen protein interaction networks, alterations

in the composition and organization of the host cell proteome, and

infection-induced post-translational regulation. We also discuss

bioinformatic tools that form an integral part of proteomics to

increase the power of discovery and ability to interpret large data-

sets. Finally, as datasets from other omic fields become available,

we explore how multi-omic technologies yield additional insight

into the mechanics of host–pathogen interactions.

Host–pathogen protein–protein interactions

Upon pathogen entry into a host cell, the progression of an infection

relies on temporally and spatially regulated host–pathogen interac-

tions that represent anti- and pro-pathogenic cellular responses

(Fig 1A). As intracellular pathogens must overcome host defenses

and then reproduce in order to propagate, pathogen proteins interact

with host proteins to either suppress or hijack the normal host

protein functions (Lum & Cristea, 2016). Identification of these

protein–protein interactions (PPIs) is not only critical for under-

standing the biology of infection, but can also point to novel targets

in treatments against human pathogens. Beyond identification of a

PPI, its characterization as either direct (one protein physically

interacting with another) or indirect (proteins interacting via other

intermediate molecules) can provide mechanistic insights into the

host–pathogen interaction network. Here we review proteomics

methods (Fig 2) that can be used to discover host–pathogen interac-

tion networks, intact protein complexes, or direct interactions, and

discuss their strengths, limitations, and future promising directions

in the context of studying infectious diseases.

Building host–pathogen protein interaction networks

The method that has seen the widest implementation in host–

pathogen interaction studies is immunoaffinity purification coupled

to mass spectrometry (IP-MS) (Lum & Cristea, 2016). In IP-MS, a

protein of interest is isolated using either an antibody raised against

the endogenous protein or by epitope-tagging the protein of interest

and using an antibody against that epitope. Then, the protein of

interest and co-isolated interacting proteins are identified by MS.

When studying host–pathogen associations, advantages of IP-MS

are that experiments can be performed in relevant cellular model

systems and in the context of viral infection to enable unbiased

detection of PPIs, as reviewed in Greco et al (2014). These studies

can be performed from the pathogen perspective, for example,

isolating a viral protein to understand what host factors are targeted

by the virus to ensure its replication or suppress host defense. Alter-

natively, IP-MS studies can determine alterations in the interactions

of a cellular protein during infection to characterize possible

changes in the host protein functions. Given the temporal cascade

of cellular events that occur during a pathogen infection (Fig 1A),

IP-MS methods, in conjunction with fluorescent tags and micro-

scopy, were also designed to provide spatial–temporal information

about host–pathogen interactions. Initially demonstrated for study-

ing the RNA virus Sindbis (Cristea et al, 2006), this approach was

later applied to other viruses, such as the RNA virus respiratory

syncytial virus (Wu et al, 2012) and the DNA viruses human cyto-

megalovirus (HCMV) and pseudorabies virus (PRV) (Moorman

et al, 2010; Kramer et al, 2012). During the past decade, IP-MS

approaches have provided a wide range of biological insights into

the progression of an infection. For example, in investigating the

prevalent human pathogen, HCMV, for which a vaccine or an effec-

tive antiviral treatment is still lacking, IP-MS studies have led to the

discovery of numerous mechanisms through which HCMV modu-

lates cellular processes, for example, activation of the mTOR path-

way to suppress host stress response (Moorman et al, 2008),

inhibition of host sensing of viral DNA and immune signaling (Li

et al, 2013), or use of cellular trafficking pathways during matura-

tion of infectious particles (Moorman et al, 2010). The value of IP-

MS was also demonstrated for other viruses, for example, revealing

that influenza A repurposes cellular nucleophosmin to aid viral

RNA synthesis (Mayer et al, 2007) and that PRV uses a host

kinesin-3 motor for its trafficking in neurons (Kramer et al, 2012).

Similarly, from the host perspective, IP-MS has helped to define

mechanisms of cellular defense (Diner et al, 2015) and to distin-

guish protein domain-dependent interactions and functions for host

antiviral factors (Diner et al, 2016).

Although IP-MS has been successfully employed to study several

viruses, there are still challenges associated with this method. The

ability to tag a viral protein with an epitope for purification, while

keeping the virus replication competent, can be problematic, partic-

ularly for viruses with smaller genome sizes. Because of this,

several studies have utilized ectopic expression of tagged viral

proteins outside the context of infection to acquire information of

potential viral-host PPIs that can be pursued with biological analy-

ses. For example, this approach was shown valuable for studying

the function of the Ebola virus matrix protein, VP40 (Yamayoshi

et al, 2008). Another example is the interactome of all 18 human

immunodeficiency virus (HIV) proteins, which predicted almost 500

host–pathogen interactions (Jager et al, 2012). Nevertheless, a

continuous effort remains to study tagged proteins in the context of

infection, such as a recent study using a scanning mutagenesis

◀ Figure 1. Proteomic tools used in the study of pathogenic infection.
(A) Overview of the replication cycle of intracellular pathogens. General steps are shown for cytosolic-replicating non-enveloped viruses (a), nuclear-replicating
enveloped viruses (b), and cytosolic bacteria (c). Viruses enter the cell through endocytosis (1a) or fusion with the host cell membrane (1b). The viral genome is extruded from
the capsid to the cytosol (2a) or nucleoplasm (2b). Viral genes are then expressed (3) to produce viral proteins (4). Viral proteins facilitate immune evasion, viral genome
replication (5a and 5b), viral genome encapsidation (6a and 6b), and envelopment (7). Fully assembled infectious viruses are secreted through lysis (8a) or through
exocytosis (8b). Bacteria become endocytosed by the host cell (1c), followed by release from endocytic vesicles mediated by bacteria-secreted proteins (2c). Then, the
bacteria acquire nutrients directly from the host cytosol (3c). Bacteria replicate in the cytosol (4c) and exit the cell to the extracellular space or directly to neighboring cells (5c).
(B) Overview of proteomic tools that have been utilized in the of study host–pathogen interactions.
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approach to generate replication-competent HIV encoding tagged

proteins for IP-MS analyses (Luo et al, 2016).

In terms of quantifying the identified host–pathogen interactions,

most IP-MS studies have relied on label-free MS quantification (e.g.,

spectral counting), which is simple, versatile, and can be applied to

any biological system. However, labeling MS strategies provide

more accurate quantification of PPI data and can be used to

compare uninfected and infected samples in the same MS experi-

ment (Fig 2A). The labeling can occur at the protein level, through

the use of stable isotope labeling of amino acids in cell culture

(SILAC), or at the peptide level, through incorporation of tandem

mass tags (TMT) or other isobaric tags (Bantscheff et al, 2012). In

studying host–virus interactions, SILAC was employed to control for

false-positive PPI identifications, such as when studying hepatitis C

virus (HCV; Gerold et al, 2015). For bacteria, IP-MS was used to

identify interactions between effector proteins secreted by intracellu-

lar Salmonella and host proteins, and SILAC quantification helped

assess specificity of interactions (Auweter et al, 2011). Although not

yet used in host–pathogen PPI studies, the multiplexing capability of

TMT (as many as 10 samples analyzed at once) would allow for the

simultaneous quantification of multiple infection time points along

with negative controls to evaluate the specificity of the interactions

detected. Label-free and isotopic labeling studies are not mutually

exclusive, and several studies have combined SILAC with label-free

IP-MS to great effect. For example, a combined analysis was used to

determine both specific interactions of histone deacetylases by

label-free methods and the relative stability of these interactions by

SILAC (Joshi et al, 2013). Such approaches can therefore be

expanded to provide valuable information about dynamic host–

pathogen interactions.

As indicated above, one limitation to IP-MS datasets is the pres-

ence of non-specifically interacting proteins that co-purify with the

protein of interest. One important consideration in pathogen–host

interaction studies is that infections can trigger significant changes

in protein abundances within a cell, and the background of non-

specific associations can be quite different than the one observed in

an uninfected cell. Therefore, control isolations should be

performed in the same biological context tested. Several available

computer algorithms exist that use data from control and experi-

mental isolations to help filter false-positive PPIs (Armean et al,

2013). One such algorithm is the significance analysis of interac-

tome (SAINT; Choi et al, 2011), which assigns interaction specificity

scores to filter low-confidence interactions. Informatics approaches

can also be used to further refine identified interactions, for exam-

ple, by providing additional controls for non-specific associations,

such as the contaminant repository for affinity purification

(CRAPome; Mellacheruvu et al, 2013). A recent database for HSV-1

interactions, HVint, provides an integrated resource of HSV-1

protein interactions and further predicts additional interactions

using evolutionary conservation of herpesvirus proteins (Ashford

et al, 2016). Once a list of interactions is obtained, these PPIs are

typically visualized within a functional network, which helps to

identify the underlying biology in host–pathogen interactions.

Common resources for network visualization include STRING

(Szklarczyk et al, 2015) and Cytoscape (Cline et al, 2007), and we

point the readers to a protocol guiding users through IP-MS data

analysis (Morris et al, 2014). Although the tools mentioned above

have become fairly standard for the proteomics field, the virus–host

PPIs for numerous viruses remain uncharted, and the understanding

of their temporal and spatial regulation remains limited even for

well studies viruses. IP-MS has been employed to an even lesser

extent in bacterial infections, and future studies are expected to

continue to expand the use of quantitative proteomics in under-

standing infectious diseases.

Analysis of intact protein complexes

In order to carry out different functions, proteins frequently exist

simultaneously within distinct protein complexes. Therefore,

although IP-MS offers inventories of protein interactions, it averages

together multiple protein complexes that contain the same protein

of interest. Additionally, without further fractionation and analysis,

information about the stoichiometry of associations within a

complex is lost (only an average stoichiometry can be estimated).

Top-down MS analyses, in which proteins are analyzed without

proteolytic digestion, can help obtain information about an intact

protein or multiprotein complex (Toby et al, 2016; Fig 2B). When

performed under non-denaturing conditions, this technique can

preserve both the non-covalent interactions and the post-transla-

tional state of the proteins within the complex. To date, in the

context of infectious disease, this technique has been applied

primarily to individual pathogen proteins, such as the hepatitis C

virus pore protein p7 (Konijnenberg et al, 2015), and pathogenic

complexes reconstituted in vitro, such as the Norwalk virus-like

particles (Shoemaker et al, 2010). However, top-down MS has not

been applied to studying host–pathogen complexes. The ability to

analyze high molecular mass complexes remains challenging, but

MS instrumentation improvements are steadily extending the mass

range in which these analyses can be applied. Top-down MS was

also combined with ion mobility separation to learn about the over-

all shape of a multiprotein complex. A prime example comes from

the Heck laboratory for the investigation of viral capsid nucleation

and assembly for hepatitis B virus and norovirus (Uetrecht et al,

2011). Thus, top-down MS is emerging as a promising tool for the

study of host–pathogen protein complexes beyond the study of

capsid assembly complexes.

Detecting direct interactions

While the methods discussed above provide unbiased detection of

interactions (IP-MS) and information about the complex stoichiome-

try (top-down MS), these approaches are not able to classify PPIs as

◀ Figure 2. Proteomic tools to study protein–protein interactions in pathogenic infections.
(A) Detection of PPIs via shotgun IP-MS. Quantitation can be done via label-free (top), isobaric tagging (middle), or SILAC (bottom) strategies. (B) Detection of PPIs via top-down
MS. This method differentiates multiple intact different complexes containing the same protein of interest and can provide stoichiometry. (C) Detection of direct PPIs via Y2H.
This method allows detection of direct interactions without the complexity of a cross-linker, but at the expense of a high false-positive rate and non-infection contexts. (D)
Characterization of PPIs by hydrogen/deuterium exchange. This method identifies the regions of each protein that interact in vitro and can be used to derive kinetic
information about the interaction. (E) Detection of direct PPIs via cross-linker. This method also identifies the regions of interaction on each protein and can be used in cells or
in vitro.

ª 2017 The Authors Molecular Systems Biology 13: 922 | 2017

Pierre M Jean Beltran et al Proteomics in infectious disease Molecular Systems Biology

5

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on June 11, 2025 from

 IP 197.10.215.189.



direct or indirect. A classic method for detecting direct PPIs is the

yeast two-hybrid (Y2H) assay (Fig 2C), which was used to examine

interactions between Epstein–Barr virus proteins and human

proteins (Calderwood et al, 2007). Although not an intracellular

pathogen, the Enterohemorrhagic E. coli (EHEC) has a close intracel-

lular interaction with its host, as it injects at least 39 proteins into

the host cytosol. Y2H was also used to elucidate direct PPIs between

EHEC and the human host cells (Blasche et al, 2014). A downside

for Y2H is its relatively high false-positive rate due to the non-

physiological expression of proteins in cellular compartments in

which they might not normally be expressed. Additionally, since

pathogen proteins are expressed outside the context of an infection,

many potentially relevant interactions can be missed. Another

in vitro method used to identify the interacting regions of two

proteins is hydrogen/deuterium exchange in conjunction with MS

(Fig 2D). This technique was applied to study HIV assembly, identi-

fying intermolecular interactions in immature and mature virion

assembly complexes (Monroe et al, 2010).

The use of cross-linking strategies has recently expanded the

investigation of direct host–pathogen protein interactions (Fig 2E).

For example, cross-linking coupled with MS was used to identify

epitopes to neutralizing antibodies in HCMV glycoproteins (Ciferri

et al, 2015). This experiment was complemented with hydrogen/

deuterium exchange to confirm peptides forming direct interactions.

Advances in search algorithms designed for cross-linking MS studies

have improved their ease of use (Leitner et al, 2016). Additionally,

a cross-linking technology containing an affinity handle cleavable

by the MS instrument improved the detection of cross-linked

peptides and was effective for studying virus–plant protein interac-

tions and their surface topologies (Chavez et al, 2012; DeBlasio

et al, 2015). In addition to the identification of direct PPIs, cross-

linkers can stabilize weaker or transient interactions, improving

their identification, however usually at the expense of increasing

non-specific associations. A recent study took advantage of these

cross-linking tools and computational development (i.e., XLinkDB)

to generate a large dataset of direct interactions between human

lung cells and Acinetobacter baumannii, a subset of which were

shown to be important in bacterial invasion (Schweppe et al, 2015).

The use of cross-linkers is not limited to identifying PPIs during

infection. Photo cross-linking was used to capture RNA–protein

interactions, providing both stoichiometric and structural informa-

tion about the beginning of HIV viral genome packaging (Kenyon

et al, 2015). Several studies used cross-linking MS to identify host

proteins that bind to viral RNA during polio (Lenarcic et al, 2013)

and dengue (Viktorovskaya et al, 2016) virus infections. The host

proteins identified in each study were unique to the respective viral

infection, and subsequent knockdown studies demonstrated the

necessity of these proteins for efficient viral processes. The exami-

nation of RNA–protein interactions by MS promises to further

expand our understanding of post-transcriptional regulation

processes that may play important roles during pathogenic

infection.

Pathogen-induced proteome alterations in time and space

The production, degradation, and spatial reorganization of proteins

are central for the replication of pathogens. For instance, viral

proteins are produced and shuttled to the appropriate compartments

(e.g., nucleus or organelle membranes) for virion assembly (Tandon

& Mocarski, 2012). In many cases, the pathogen triggers changes in

the levels of specific host proteins needed for replication. The host

also responds to the pathogen invasion through global alterations in

the proteome organization, important for mounting effective

defenses. For example, innate immune and stress responses to

pathogenic invasion can trigger regulation of tens-to-hundreds of

proteins (Janssens et al, 2014). Proteomic technologies have been

developed and adapted to studying the temporally and spatially

separated steps of an infection process (Fig 1). These studies have

provided insights into the regulation of specific time points of infec-

tion and the necessary subcellular compartment reorganization.

Temporal analysis of the infected cellular proteome

Studying temporal proteome alterations has become a popular

approach due to the availability of well-established protocols and

modern MS instrumentation. Experimental designs range from

simple approaches, like comparing protein abundances between

infected and uninfected cells (Fig 3A), to more complex approaches,

such as including multiple time points (Fig 3B). For example, to

study the replication cycle of herpesviruses, omic studies compared

time points of infection that cover the infection life cycle in the cell

(Weekes et al, 2014; Berard et al, 2015). Such studies implement

label-free and/or isotopic labeling methods (e.g., SILAC and TMT),

in conjunction with analyses using private (Proteome Discoverer,

Thermo Fisher) or open source software (Cox et al, 2014), to deter-

mine alterations in protein abundances. Once the relative quantita-

tive values are collected, the significance and magnitude of the

differential protein abundance are assessed with statistical methods,

such as t-test, analysis of variance (ANOVA), or more sophisticated

linear models available in software packages (e.g., MSstats; Choi

et al, 2014). Additional bioinformatics analyses are required to

correlate the proteins with specific biological pathways and cellular

functions. Commonly, hierarchical clustering is used to identify sets

of proteins with similar temporal profiles upon infection. These

clusters are then subject to functional analysis by a variety of bio-

informatics tools, including gene ontology analysis, pathway

analysis (Kanehisa et al, 2016), network analysis (Cline et al, 2007;

Szklarczyk et al, 2015), or a combination of these (da Huang et al,

2009; Mi et al, 2013).

Temporal proteome analyses have been successful in identifying

pathways regulated by the pathogen and key proteins involved in

pathogenicity. For example, viruses depend on cellular metabolism

and have acquired mechanisms to regulate it for energy production

and lipid synthesis, among other processes. Broad alterations in

proteins involved in metabolism regulation have been reported from

temporal proteomic studies of human-relevant viruses, such as the

recently re-emerged Chikungunya virus (Abere et al, 2012), HCMV

(Weekes et al, 2014; Jean Beltran et al, 2016), flaviviruses

(Pastorino et al, 2009; Grabowski et al, 2016), and HCV (Diamond

et al, 2010). Some of these changes are temporally controlled; for

example, HCV regulation of glycolysis proteins occurred only early

in infection, while proteins used in lipid metabolism were increased

throughout all time points (Diamond et al, 2010). These proteome

alterations can also correlate with pathogenicity, as it was demon-

strated in temporal proteomic studies of different influenza strains

(Simon et al, 2015; Ding et al, 2016). Particularly, regulation of
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specific proteins by the emerging and highly virulent H7N9 influ-

enza virus was associated with its increased cytopathic effects (Ding

et al, 2016). Since infections induce broad proteome alterations,

studies were also designed with a narrow focus on individual patho-

genic proteins. For instance, a recent proteomic study expressing

the RTA protein coded by Kaposi’s sarcoma-associated virus

(KHSV), which triggers lytic reactivation, identified ARID3B as a

host protein important to initiate lytic replication (Wood et al,

2016). So far mainly used for cell culture systems, temporal

proteomic analyses during infection have been successfully applied

for in vivo studies in animal models challenged with viruses and

bacteria (Fraisier et al, 2014; Lopez et al, 2016; Shen et al, 2016).

To understand the protein kinetics (i.e., synthesis, turnover, and

degradation) that lead to these changes in protein abundance,

several proteomic tools have been developed and applied in

pathogen research. Identification of newly synthesized proteins,

possible through a “click chemistry” labeling strategy (Dieterich

et al, 2007), led to the discovery of nascent proteins synthesized at

axon terminals during infection by neurotropic viruses (Koyuncu

et al, 2013). Changes in protein turnover rates of Salmonella (Wang

et al, 2016) have been measured using dynamic SILAC (Claydon &

Beynon, 2011) to identify how this pathogen regulates its proteome

as it invades the host. Viruses can also trigger protein degradation

using proteases encoded in their genome. Thus, the use of “degrado-

mics” tools (i.e., the determination of protease substrates; Kleifeld

et al, 2011) has revealed a novel target of the poliovirus 3C protei-

nase important for viral replication (Jagdeo et al, 2015).

Spatial cellular proteome organization during infection

Although proteome analyses on whole cells reveal infection-induced

changes in protein abundances, it does not preserve spatial informa-

tion that is important for understanding proteome organization and

for characterizing molecular mechanisms of pathogen infection. As

pathogens trigger alterations within specific subcellular compart-

ments, several groups have used subcellular fractionation to investi-

gate the localization of proteins and specific proteome alterations

during infection. This method, referred to as spatial or organelle

proteomics, is achieved by separating various subcellular compart-

ments using fractionation methods, followed by MS analysis

(Fig 3C). Fractionation methods include labeling and affinity purifi-

cation (e.g., for cell surface proteins; Gudleski-O’Regan et al, 2012),

differential or density gradient centrifugation, and differential deter-

gent fractionation. To quantify protein abundances in compartments

of infected and uninfected cells, cells can be labeled using SILAC,

combined, and fractionated, minimizing technical variability during

the fractionation steps. Alternatively, the uninfected and infected

samples can be kept separate during fractionation, and quantification

can be performed by either label-free approaches or isobaric tags

(e.g., TMTs). The advantage of these alternatives is that there is less

limitation in the number of samples that can be compared, allowing

analysis of multiple fractions and infection time points.

These approaches have been applied to the targeted study of

several organelles during infection. To better understand the

requirements for viral entry into a host cell, and with the hope to

design interventions that block this, infection-induced changes in

the cell surface proteome have been investigated. These studies

demonstrated the dynamic role of the plasma membrane proteome

in intracellular and intercellular signaling, transport of metabolites

with the extracellular space, and cell attachment during infection

(Gudleski-O’Regan et al, 2012; Hsu et al, 2015; Matheson et al,

2015). The nucleus is a major target for nuclear-replicating viruses

such as herpesviruses, which target nuclear shuttling during their

replication (Sanchez-Quiles et al, 2011; Carter et al, 2015). The

mitochondrion has crucial functions for viral replication, such as in

cell metabolism, respiration, and stress response. Proteomic studies

have shown viral-induced alterations in the mitochondria biogene-

sis, oxidative phosphorylation, and the electron transport chain

(Wu et al, 2013; Karniely et al, 2016; Villeneuve et al, 2016). Sub-

organellar compartments, such as the endoplasmic reticulum

mitochondria-associated membranes (MAMs), have also been inves-

tigated, as these are sites of innate immune signaling through MAVS

(Horner et al, 2015). Secretory organelles are involved in the repli-

cation of certain pathogens, such as Salmonella typhimurium, and

are amenable targets for proteomic analyses to identify host factors

required for replication (Kaloyanova et al, 2015).

It is starting to become clear that viruses can cause alterations in

multiple compartments during infection. Understanding the tempo-

ral correlation of these changes and the possible translocation of

proteins between organelles demands the simultaneous analysis of

multiple subcellular compartments throughout an infection time

course. Methods, such as PCP (protein correlation profiling) and

LOPIT (localization of organelle proteins by isotope tagging), can

generate protein localization maps of multiple organelles by match-

ing the fractionation patterns of organelle markers with other orga-

nelle proteins separated by density gradient fractionation (Andersen

et al, 2003; Dunkley et al, 2004). An extension of these methods

was recently developed to define the dynamic spatial organization

of the host proteome across multiple organelles throughout the time

course of HCMV infection (Fig 3D). Integrating quantitative proteo-

mics with live cell microscopy, this study revealed broad alterations

in organelle composition and shape, and identified discrete protein

translocations between secretory organelles that were necessary for

Figure 3. Proteomic tools to study whole-cell or subcellular proteome alterations during infection.
Proteomic methods can be used to study alterations throughout infection in protein abundance or in protein subcellular localization. (A) SILAC-based workflow to define
proteome alterations upon infection. Differentially labeled uninfected and infected cells are mixed and processed directly for MS analysis (whole-cell temporal proteomics) or
preceded by a subcellular fractionation step (organelle temporal proteomics). (B) An alternative method using label-free quantification or isobaric tags (e.g., TMT) to define
proteome alterations at multiple time points of infection. Cells or subcellular organelles are harvested at different infection times, and following digestion, peptides from each
fraction are analyzed byMS (label-free quantification) or labeled with isobaric tags andmixed for multiplexedMS analysis and quantification. (C) Defining protein localization
during infection. Discrete subcellular fractions (e.g., differential centrifugation or density gradient fractionation) are collected from infected and uninfected cells, and analyzed
by MS. (D) Proteomic approach to assign proteins to specific organelles and determine alterations in protein subcellular localization. Multiple organelles from infected or
uninfected cells are partially separated using a density gradient. Fractions are analyzed by quantitative MS, resulting in spatial profiles of proteins across the gradient. Well-
known organelle residents are used as organelle markers for the spatial profiles. The remaining proteins are assigned to organelles using classification algorithms (e.g.,
machine learning). The libraries of predicted protein localizations from infected and uninfected cells are compared to determine candidate proteins undergoing infection-
induced translocations between organelles.
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the production of infectious particles (Jean Beltran et al, 2016). In

looking ahead, the integration of methods developed to track the

dynamic localization of proteins within the cell (Itzhak et al, 2016)

will also be valuable in studying the spatial reorganization of the

cell proteome during infection.

Pathogen-induced regulation of protein post-
translational modifications

Post-translational modifications (PTMs) regulate protein functions

through alterations in protein interactions, stability, activity, and

subcellular localization. Therefore, PTM regulation on either host or

pathogens proteins can play critical roles in the progression and

outcome of infection (Ribet & Cossart, 2010). Studying the cellular

landscape of PTMs and their pathogen-induced regulation has

provided key insights into our understanding of host–pathogen

interactions. This section will review PTMs studied in the context of

infection, which have included phosphorylation, acetylation, glyco-

sylation, ubiquitination, and SUMOylation.

Diverse forms of post-translational modifications are relevant in the

context of infection

Post-translational modifications are relevant throughout various

stages of the pathogen life cycle (Fig 4). During entry, enveloped

viruses fuse with the cellular membrane via viral glycoproteins on

the viral envelope. Extensive glycosylation has been observed in

envelope proteins of herpesviruses, including HSV-1, HCMV, vari-

cella zoster virus (VZV), and Epstein–Barr virus (EBV), and shown

to be critical for their virulence (Bagdonaite et al, 2016). For

instance, HCMV glycoproteins gB and gH/gL are essential for virus

attachment to cell membrane and the subsequent membrane fusion

(Wille et al, 2013). In addition to facilitating entry, highly glycosy-

lated envelope proteins can protect both RNA and DNA viruses from

detection by the host immune system (Aguilar et al, 2006; Reynard

et al, 2009; Helle et al, 2010; Machiels et al, 2011). Interestingly, a

similar mechanism of immune evasion has been observed in bacte-

ria. The opportunistic pathogen Burkholderia cenocepacia shields

the flagellar protein FliC from recognition by the host TLR5 receptor

during membrane attachment via glycosylation, thus dampening the

host immune responses (Hanuszkiewicz et al, 2014). Once inside

the host cells, pathogens have strategies to regulate host protein

PTMs to obstruct early host defenses. For instance, the HIV-1

protein Vpu interferes with the ubiquitination machinery, inhibiting

the degradation of IjBa (Bour et al, 2001). The bacterial pathogen

Yersinia enterocolitica also targets this pathway by expressing the

virulence factor YopJ/P that mediates acetylation of the IKK

complex, dampening its activity, and blocking IjBa phosphorylation

(Fig 4; Mittal et al, 2006). PTMs are also critical for regulating dif-

ferent steps in the virus life cycle. For example, HSV-1 encodes

ICP0, an E3 ubiquitin ligase, which mediates degradation of a class

of host proteins via ubiquitination and SUMOylation, protecting

viral genome from repression (Fig 4; Randow & Lehner, 2009).

Additionally, phosphorylation of the human T-cell lymphotropic

virus (HTLV-1) protein Tax was shown to activate viral gene

transcription (Bex et al, 1999).

From the host perspective, PTMs can promote defense mecha-

nisms against infection. PTMs play critical roles in pathogen

recognition via host pattern recognition receptors (PRR) and their

downstream innate immune pathways (Fig 4). For example, subcel-

lular localization of IFI16, a cellular protein able to recognize viral

DNA and induce innate immune response, is modulated by acetyla-

tion of its nuclear localization signal motifs (Li et al, 2012b).

SUMOylation contributes to the stability of another PRR, cGAS,

promoting sensing of DNA virus infection (Hu et al, 2016). Phos-

phorylation of innate immune adaptor proteins (e.g., MAVS, STING,

and TRIF) activates IRF3, triggering the production of type I IFN

(Liu et al, 2015). This phosphorylation-mediated mechanism is

present in distinct pattern recognition pathways (Fig 4), highlighting

the importance of this modification in host–pathogen interactions

[reviewed by Janeway and Medzhitov (2002)]. Finally, the NF-jB
pathway, a core innate immunity pathway, can be jointly regulated

by multiple PTMs, including phosphorylation, ubiquitination, and

acetylation (Viatour et al, 2005; Li et al, 2012a; Collins et al, 2016).

Another relevant PTM regulation during infection is the dynamic

modification of histones, which alters chromatin compaction and

the recruitment of histone modifiers. As cellular histones contribute

to the formation of host nucleosomes, as well as viral nucleosome

(e.g., nuclear-replicating DNA viruses and integrating viruses),

histone PTMs have significant impact on both host and pathogen

gene expression. For example, an increasing body of evidence has

shown that methylation and acetylation histone patterns are altered

upon infection, which results in changes in chromatin remodeling

and repression of immune factors [Fig 4; reviewed by Paschos and

Allday (2010)]. However, histone PTM status is also critical for

progression through the virus life cycle, as shown for the expression

of immediate early, early, and late viral proteins upon infection with

HCMV (Cuevas-Bennett & Shenk, 2008). Another example comes

from studies on HIV-1, where host histone deacetylase 1 (HDAC1)

was shown to reduce histone acetylation, impacting chromatin

structure of HIV LTR and repressing viral transcription (Williams

et al, 2006).

MS as a tool to study host and pathogen protein PTMs

Post-translational modifications are ubiquitous in the cell, and many

of these are dynamically regulated during infection, motivating

global PTM analyses made possible by proteomic methods. Selected

global PTM mapping, that is, focused on specific types of modifi-

cations, has been performed for various pathogenic agents, includ-

ing bacteria, fungi, protozoa, and viruses (e.g., Leach & Brown,

2012; Bell et al, 2013; Champasa et al, 2013; Liu et al, 2014;

Bagdonaite et al, 2016) to identify and quantify SUMOylations,

phosphorylations, acetylations, and histone modifications (Kulej

et al, 2015). The primary means of PTM discovery experiments is

the selective enrichment of specific proteins or PTMs followed by

identification of modified peptides. This enrichment is usually

accomplished via antibodies against the PTM or protein or via a

resin that can enrich a class of PTMs based on their chemical prop-

erties (e.g., metal affinity chromatography for phosphopeptides)

(Gruhler et al, 2005; Zielinska et al, 2012; Udeshi et al, 2013;

Hendriks et al, 2014; Engholm-Keller & Larsen, 2016). In addition to

these discovery-driven experiments, targeted MS/MS methods, such

as selected reaction monitoring (SRM) or parallel reaction monitor-

ing (PRM), provide the means for sensitive monitoring of PTMs on

proteins of interest. Despite their well-recognized value for the accu-

rate quantification of low abundance PTMs (Kusebauch et al, 2016),
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these approaches have not been frequently implemented in

pathogen infection studies, and their future use promises to expand

our understanding of proteome regulation during infection. Addi-

tionally, the systematic investigation of different types of PTMs and

of their temporal and spatial regulation in infectious contexts is still

lacking. This is the case for PTMs that are known to be critical regu-

lators of protein function, such as phosphorylation, ubiquitination,

and acetylation, as well as for emerging PTMs with limited knowl-

edge about their impact on protein function, such as malonylation,

succinylation, and lipoylation. Furthermore, for the identified PTMs,

the exact roles of many of these modifications either in uninfected

or infected cells still remain to be elucidated. Future studies that

combine whole proteome monitoring, protein–protein interaction

studies, and PTM identification within a single biological source

(e.g., relevant cells or tissue) will enhance our understanding of

infection at a systems level and will help pinpoint new targets for

therapeutic intervention.

Multi-omics integration for the study of host–
pathogen interactions

Early omic approaches were mostly focused on acquiring a single

“layer” of information from the cell as a whole. However, it is
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Figure 4. Post-translational modifications (PTMs) involved in the context of infection.
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evident that pathogenic invasion, as well as other biological

processes, causes alterations at multiple layers in the molecular

organization of the host. Furthermore, these molecular layers (e.g.,

genetic sequence, mRNA transcripts, protein, lipids, metabolites)

are interconnected, influencing and complementing each other. In

recent years, a number of multi-omic approaches have been applied

to studying pathogenic infection by integrating proteomics with

other omic analyses. These approaches have been useful to deter-

mine the coding capacity of pathogens, identify key virulence

factors, and define, at a systems level, the response of the host to

pathogenic infection (Fig 5).

One such multi-omic approach is proteogenomics (Fig 5A), the

integration of proteomic, transcriptomic, and genomic data to iden-

tify novel peptides and refine existing gene models (Nesvizhskii,

2014). Proteomic experiments informed by transcriptomic data

(e.g., RNA-seq and ribosome profiling) are of particular interest for

the study of pathogens. This is because certain pathogens encode

complex protein isoforms generated by non-canonical translation

events, overlapping and short open reading frames (ORFs), and

complex alternative splicing and transcription start/end sites. Thus,

defining genes based on genetic sequences and in silico approaches

is not sufficient. One example is the HCMV genome, which was

initially thought to encode ~192 unique ORFs by an in silico

approach (Murphy et al, 2003), yet the coding capacity was

revealed to be more complex using ribosome profiling (Stern-

Ginossar et al, 2012). Protein evidence of these non-canonical ORFs

has been collected by MS in the original ribosome profiling study

and in following proteomic studies (Weekes et al, 2014; Jean

Beltran et al, 2016). Conversely, proteomics is also integrated with

transcriptomic analyses to improve the annotation of pathogen

genomes, providing experimental evidence for genes, delineating

intergenic events, and refining the boundaries of existing gene

models of pathogens (Abd-Alla et al, 2016; Miranda-CasoLuengo

et al, 2016). Although the data analysis on this types of experi-

ments is challenging, computational platforms are readily available,

which facilitate future proteogenomic research in pathogens (Fan

et al, 2015; Rost et al, 2016).

Multi-omic approaches have been adapted to identify key viru-

lence factors (Fig 5B). Genetic factors (i.e., SNPs, non-synonymous

mutations, and genome rearrangement) that contribute to virulence

and pathogenicity can be identified by sequencing and comparing

genomes of multiple pathogen strains, as done in mycoplasma

(Lluch-Senar et al, 2015). In this study, additional transcriptomic

and proteomic data were used to determine the mechanism under-

lying the genetic-virulence relation. Elevated CARDS toxin expres-

sion was identified as a source of pathogenicity associated with a

single nucleotide mutation specific to one mycoplasma strain. One

source of virulence that is difficult to assess from genetic

sequences or gene expression is the glycosylation pattern of patho-

genic glycoproteins, such as the hemagglutinin receptors of

influenza. Proteomics, glycopeptidomics, and glycomics were inte-

grated to identify glycosylation sites and glycoform distribution

among several influenza strains (Khatri et al, 2016). Using this

approach, it was possible to determined that the glycosylation

patterns correlated with selective pressure imposed by host

immune factors (i.e., immune lectins), which affect the strain anti-

genicity and virulence.

Multi-omic studies are also highly effective to analyze the

response and alterations occurring in the host system (Fig 5C). Since

pathogens commonly cause alterations in the host metabolism

(Munger et al, 2008), several multi-omic approaches have inte-

grated proteomics and metabolomics to obtain a systems-level

understanding of metabolic pathway regulation upon infection (Su

et al, 2014; Villar et al, 2015). In these studies, the added protein-

level information in metabolic pathways is used to identify specific

proteins that may be targeted by pathogens to cause these metabolic

alterations. To integrate multi-omics data, network approaches

(Bensimon et al, 2012) can explain the relation between different

omic layers of information. By analyzing network topology, one can

identify functional relations between nodes in the network and key

regulators of a system. In an early example of multi-omic network

analysis during infection, proteomic and lipidomics data during

HCV infection were used to generate a network relating proteins

and lipids through abundance correlations (Diamond et al, 2010).

The analysis revealed phospholipids and lipid-regulating enzymes

that act as hubs and are linked to HCV pathogenesis. The value of

integrating multi-omics datasets is also highlighted by the integra-

tive personal omics profile (iPOP) analysis, which collected multi-

omic data of an individual throughout a 14-month period that

included two events of viral infection (Chen et al, 2012). Other stud-

ies have integrated phenotypic data from infections with multi-

omics data using network models (Gibbs et al, 2014). An exemplary

study by (Tisoncik-Go et al, 2016) investigated host responses

during infection by various strains of pandemic influenza virus.

Figure 5. Integrative omic approaches for the study of host–pathogen interactions.
(A) Proteomic tools have been integrated with other omic approaches to refine models of pathogen genomes. Proteomic data can be acquired from purified virions, bacteria
culture under host physiological conditions, and from infected host cells. Transcriptomic data are acquired from bacteria cultures or virus-infected host cells. Genomic data
are acquired from purified viral particles and bacteria cultures. In genomic-informed proteomic experiments, MS data are searched through a genome database containing
translated sequences from known or predicted open reading frames (ORFs) to provide evidence of protein expression. In transcriptomic-informed proteomic experiments, the
search database is built from RNA-seq and ribosome profiling to identify uncommon transcripts difficult to predict from genomic sequences. Proteogenomic approaches use
both genomic and transcriptomic data to build a customized database search useful in identifying peptides from 50 untranslated regions (UTRs), 30 UTRs, alternative junction
splicing, intron sequences, short ORFs, and alternative reading frames to refine pathogen gene models. (B) Integrating proteomics with other omic tools and phenotype
information to identify key virulence factors. Genomic data are used to identify strain-specific mutations and associate them with differences in protein expression. The
differences in protein expression are then related to phenotype alterations using phenotypic assays on wild-type strains and those harboring the mutations. Proteomics,
glycomics, and glycopeptidomics are used to identify glycosylation patterns associated with specific protein sequences and viral strains. These glycosylation patterns are then
associated with phenotypic variations using phenotypic assays on strain having different glycosylation patterns. (C) Using multi-omic datasets to define the host response to
an infection. Quantitative multi-omic datasets are mapped to known metabolic networks to identify pathways that are up- or downregulated upon infection. Alternatively,
multi-omic datasets are integrated with phenotype data to construct correlation networks. Nodes represent individual genes, metabolites or phenotype measurements, or
they can also represent module eigengenes. Edges represent correlations between nodes from quantitative measurements. Networks can be analyzed to identify novel
associations, including novel clusters, and key nodes, such as hubs and bridges.
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Proteomics, lipidomics, metabolomics, and transcriptomics datasets

were represented as module eigengenes (i.e., representative profiles

of modules from each dataset using the first principal component)

to generate an integrative network, identifying relationships

between omic datasets and infection-induced phenotypes. Further-

more, this study revealed strain-specific multi-omic associations by

looking at the effects of these influenza strains separately.

As novel omics methods continue to be developed, their integra-

tion with other omics approaches will provide additional levels of

information that could benefit pathogenic research. Some of these

approaches could include, for example, integration of host and

pathogen PTMs (Chen et al, 2016) or subcellular location informa-

tion (Jean Beltran et al, 2016). An important aspect of multi-omics

studies is the availability of informatics platforms that can be used

to access and visualize the data. Some examples include ImmuNet

(Gorenshteyn et al, 2015), a tool that integrates immune pathway

knowledge and omics data, and ZikaVR (Gupta et al, 2016), a tool

for visualization of multi-omic data from Zika virus research. The

availability of such resources is at the core of generating data-driven

hypotheses for future pathogenic research.

Closing remarks

To establish the interplay between host cells and pathogens, it is

critical to gain a view of host and pathogen proteins on a systemic

level. In recent years, the study of human infectious diseases has

benefited significantly from the contribution of proteomic

Box 1. Clinical applications of proteomic tools

In addition to providing fundamental insights into the basic molecular
mechanisms of infectious disease, proteomics has made a significant
impact in clinical studies and diagnosis. The utility of proteomics as a

clinical tool is perhaps best demonstrated in the area of cancer treat-
ment. One example is the development of diagnostic tools for classifi-
cation of malignant ovarian cancer, such as OVA1 (Fung, 2010) currently
approved by the US Food and Drug Administration (FDA). Significant
research progress has been made in the use of proteomics to inform
about the need for a treatment. It is expected that further applications of
proteomics will allow microorganism identification, biomarker discovery,
and tracking the course of disease.
One of the crucial points for treating infectious diseases is the reliable
and rapid identification of the microorganism causing the disease. One
current limitation of standard diagnostic methods is the turnaround for
laboratory cultures, which may take 2 days or more to complete analyses.
Currently, two MALDI (matrix-assisted laser desorption/ionization)-MS
instruments are approved by the US FDA for identification of cultured
bacteria from human specimens, the VITEK MS (bioMerieux, Inc.) and the
MALDI Biotyper CA System (Bruker Daltonics, Inc.; Bizzini et al, 2010;
Rychert et al, 2013). Although these instruments were approved for use
in small amounts of cultured bacteria, they do not circumvent the need
to wait for the culture to grow. Several studies have demonstrated
the effective detection of bacteria directly from human biological fluids,
such as blood and urine (La Scola & Raoult, 2009; Inigo et al, 2016). Thus,
it is expected that MS-based proteomics will be used in the future as a
tool for rapid identification of pathogens from human biological
specimens.
In addition to identifying the pathogenic microorganism, proteomics
techniques have been used to identify host biomarkers of infection. For
example, MS has been used to identify host biomarkers for sepsis from
urine samples (Su et al, 2013) and biomarkers associated with hepatocel-
lular carcinoma in hepatitis B virus patients (Yau et al, 2013), which can
become cost-effective and non-invasive diagnostic tools. Biomarkers are
not only useful in diagnosis, but also in tracking the progress of a treat-
ment. For example, MS was used to monitor the response to hepatitis C
treatment to prevent unnecessary toxicities and reduce cost (Devitt et al,
2011). Similar monitoring of treatment progress could also be beneficial
in clinical trials, such as for tuberculosis treatment (Nahid et al, 2014).
Importantly, biomarkers can be readily screened by targeted MS/MS
approaches (Chambers et al, 2014) for the development of clinical diag-
nosis protocols.
Finally, pathogens can trigger release of antibodies that can be identified
to facilitate diagnosis and treatment of infection and some autoimmune
disorders. An innovative proteomic tool for detection of these antibodies is
the high-density nucleic acid programmable protein array (HD-NAPPA).
These arrays express hundreds of viral proteins from multiple viral species,
which can be used to detect antibodies in the human serum specific to
viral epitopes (Bian et al, 2015). Thus, both MS-based and non-MS-based
technologies pave a promising future for the application of proteomics in
clinical diagnosis and treatment.

Discovery
MS proteomics

Targeted
MS proteomics

Discovery 
of disease 
biomarkers in
body fluids

Monitoring 
biomarkers for 
diagnosis and 
prognosis

Pathogen
Identification

HD-NAPPA
High density nucleic acid 

programmable protein array

Identification
of serum 
antibodies 
targeting 
pathogen
epitopes

MS MS/MS

MS MS/MS

Proteomic
approaches
in the clinic

Box 1 Figure. Proteomic approaches in the clinic directed
toward infectious diseases.
Diagram showing proteomic approaches that have been applied
for the discovery, diagnosis, and prognosis of pathogens and
infectious diseases. (Top) Protein arrays (e.g., HD-NAPPA) expos-
ing different viral proteins. If an antibody targeting these viral
proteins is present in the serum of the individual, it binds and
is detected using fluorescent secondary antibodies. (Middle)
Using shotgun MS approaches, proteins can be readily detected
in the patient body fluids. Significantly enriched proteins in
diseased individuals are candidates as biomarkers. (Bottom)
These biomarkers are then monitored using a targeted MS
approach in diseased patients for diagnosis and prognosis.
Additionally, a targeted MS approach can be used to readily
identify pathogens from patient samples.
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approaches for pathogenic research, and proteomic tools are now

starting to become promising tools in clinical studies and diagnosis

(Box 1). Quantitative MS-based proteomic methods (e.g., TMT-

labeling and SILAC) have become well established for sensitive

and accurate comparison of protein abundances between biological

samples, and have been readily integrated for studying the tempo-

ral progression of an infection (Fig 1). Notably, a growing interest

in this field is the understanding of these temporal alterations with

spatial detail (i.e., within organelles, nucleus, or viral assemblies).

Improvements in technologies, such as fractionation, sample multi-

plexing, and computational tools for spatial proteome analysis, are

expected to facilitate proteomic research of infectious disease with

both temporal and subcellular detail. A major component of under-

standing pathogen-induced changes in proteome and related cellu-

lar pathways is the identification of PPIs between host and

pathogen proteins and their dynamic regulation during the time

course of infection. Future studies of such PPIs should leverage the

existing proteomic platforms, while also taking advantage of the

continually improving MS quantitative approaches, particularly for

adding spatial and temporal resolution to the study of interac-

tomes. Adding additional layers of complexity, PTMs have emerged

as critical modulators of protein functions during infection.

Proteomic studies on PTMs hold great potential for uncovering

mechanisms mediating the progression, spread, and pathogenicity

of infection.

Continued development of algorithms for analysis and interpreta-

tion of data from protein abundance, interactions, and PTMs will

facilitate examination of the biology underlying pathogenic infec-

tion. Notably, there is a need for bioinformatics platforms for multi-

omics analyses, as laboratories that do not specialize in omics

research, yet have particular expertise in pathogenic research,

would benefit from implementing these approaches to their specific

infectious disease models. Altogether, these proteomic studies have

contributed to discoveries in diverse pathogenic infections, by char-

acterizing pathogenic factors, host anti-pathogen proteins and

protein complexes, and profiling both host and pathogen PTM sites

during infection. The integration of proteomics with other omic

technologies provides researchers with opportunities to obtain a

holistic picture of host–pathogen interaction, with the goal to obtain

a better understanding of the dynamics of disease and for future

discovery of therapeutic targets.
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